An objective approach to cluster validation
نویسندگان
چکیده
Cluster validation is a major issue in cluster analysis. Many existing validity indices do not perform well when clusters overlap or there is significant variation in their covariance structure. The contribution of this paper is twofold. First, we propose a new validity index for fuzzy clustering. Second, we present a new approach for the objective evaluation of validity indices and clustering algorithms. Our validity index makes use of the covariance structure of clusters, while the evaluation approach utilizes a new concept of overlap rate that gives a formal measure of the difficulty of distinguishing between overlapping clusters. We have carried out experimental studies using data sets containing clusters of different shapes and densities and various overlap rates, in order to show how validity indices behave when clusters become less and less separable. Finally, the effectiveness of the new validity index is also demonstrated on a number of real-life data sets.
منابع مشابه
An Ensemble Method for Validation of Cluster Analysis
Clustering is more subjective work than classification and regression. Though classification and regression have many general validation measures, clustering has few validation measures. Also, it is difficult to develop general measure of cluster validation. So, many evaluation measures have been published for cluster validation. In this paper, we propose an ensemble method of validation for cl...
متن کاملFuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure
Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....
متن کاملFuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure
Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....
متن کاملFuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure
Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....
متن کاملFuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure
Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....
متن کاملFuzzy Cluster Validation Based on Fuzzy PCA-Guided Procedure
Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 27 شماره
صفحات -
تاریخ انتشار 2006